• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät

Menu Menu schließen
  • Home
  • Research
    • Publications
    • Project Descriptions
      • Research Areas
        • Research Area A „Nanostructured functional films“
        • Research Area B „Hierarchical functional materials“
        • Research Area C „Data and Processing“
    Portal Call for 13 PhD Positions
  • Activities
    • Qualification Program
    Portal Call for 13 PhD Positions
  • Contact
    • Contact
    Portal Call for 13 PhD Positions
  • People
    • Team of Principle Advisors
    • Mercator Fellows
    Portal Call for 13 PhD Positions
  1. Startseite
  2. Project Descriptions
  3. Research Areas
  4. Research Area C „Data and Processing“
  5. C1: Physics-Informed Data Fusion of 4D-STEM and Spectroscopic Signals for Functional Thin Films

C1: Physics-Informed Data Fusion of 4D-STEM and Spectroscopic Signals for Functional Thin Films

Bereichsnavigation: Project Descriptions
  • Research Areas
    • Research Area A "Nanostructured functional films"
    • Research Area B "Hierarchical functional materials"
    • Research Area C "Data and Processing"
      • C1: Physics-Informed Data Fusion of 4D-STEM and Spectroscopic Signals for Functional Thin Films
      • C2: Machine Learning for Multi-Scale and Multi-Modal Microscopy Data Analysis
      • C3: AI-Driven Active Learning for Predictive Materials Design

C1: Physics-Informed Data Fusion of 4D-STEM and Spectroscopic Signals for Functional Thin Films

Physics-Informed Data Fusion of 4D-STEM and Spectroscopic Signals for Functional Thin Films

This doctoral project aims to develop advanced data fusion algorithms for combining multi-modal 4D-STEM and spectroscopic signals to achieve comprehensive, high-fidelity characterization of functional thin films and nanostructured materials. The candidate will design physics-informed models that correlate structural, crystallographic, and chemical information from elastic and inelastic electron scattering channels. These methods will significantly enhance signal-to-noise ratios, enabling dose-efficient imaging of beam-sensitive materials. The algorithms will be implemented and tested at state-of-the-art 4D-STEM and SEM-STEM instruments equipped with direct electron detectors at CENEM. Applications include inorganic and organic semiconductor films, as well as catalytic layers in electrochemical devices. The resulting workflows will provide quantitative structure–property correlations across multiple length scales, forming the basis for automated, data-driven microscopy in next-generation materials discovery.

Supervisor

PP
Prof. Dr. Philipp PelzE-Mail: philipp.pelz@fau.de
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Freyeslebenstraße 1
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • BlueSky
  • Facebook
  • RSS Feed
  • Xing
  • YouTube
Nach oben