• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät

Menu Menu schließen
  • Home
  • Research
    • Publications
    • Project Descriptions
      • Research Areas
        • Research Area A „Nanostructured functional films“
        • Research Area B „Hierarchical functional materials“
        • Research Area C „Data and Processing“
    Portal Call for 13 PhD Positions
  • Activities
    • Qualification Program
    Portal Call for 13 PhD Positions
  • Contact
    • Contact
    Portal Call for 13 PhD Positions
  • People
    • Team of Principle Advisors
    • Mercator Fellows
    Portal Call for 13 PhD Positions
  1. Startseite
  2. Project Descriptions
  3. Research Areas
  4. Research Area C „Data and Processing“
  5. C2: Machine Learning for Multi-Scale and Multi-Modal Microscopy Data Analysis

C2: Machine Learning for Multi-Scale and Multi-Modal Microscopy Data Analysis

Bereichsnavigation: Project Descriptions
  • Research Areas
    • Research Area A "Nanostructured functional films"
    • Research Area B "Hierarchical functional materials"
    • Research Area C "Data and Processing"
      • C1: Physics-Informed Data Fusion of 4D-STEM and Spectroscopic Signals for Functional Thin Films
      • C2: Machine Learning for Multi-Scale and Multi-Modal Microscopy Data Analysis
      • C3: AI-Driven Active Learning for Predictive Materials Design

C2: Machine Learning for Multi-Scale and Multi-Modal Microscopy Data Analysis

Machine Learning for Multi-Scale and Multi-Modal Microscopy Data Analysis

This doctoral project aims to develop advanced machine learning methods for analyzing and integrating multimodal microscopy and tomography data across scales. The candidate will adapt and fine-tune state-of-the-art self-supervised and transfer learning models for tasks such as segmentation, registration, and correlation of 2D and 3D datasets from electron, X-ray, and optical microscopy. A key focus will be on representation learning that efficiently handles limited or partially labeled data. Physics-informed pretext tasks and synthetic data will be incorporated to enhance model generalization and reduce the gap between simulated and experimental data. The resulting models will enable robust characterization of complex hierarchical materials with minimal manual intervention. This work will provide foundational tools for automated, data-driven microscopy and accelerate the understanding of structure–property relationships in functional materials.

Supervisor

KB
Prof. Dr. Katharina BreiningerE-Mail: katharina.breininger@fau.de
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Freyeslebenstraße 1
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • BlueSky
  • Facebook
  • RSS Feed
  • Xing
  • YouTube
Nach oben